NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
NON-RIGID 3D SHAPE RETRIEVAL USING MULTIDIMENSIONAL SCALING AND BAG-OF-FEATURES
Published
Author(s)
Zhouhui Lian, Afzal A. Godil
Abstract
Matching non-rigid shapes is a challenging research field in content-based 3D object retrieval. In this paper, we present an image-based method to effectively address this problem. Multidimensional Scaling (MDS) and Principal Component Analysis (PCA) are first applied to each object to calculate its canonical form, which is afterward represented by 66 depthbuffer images captured on the vertices of an unit geodesic sphere. Then, each image is described as a word histogram obtained by the vector quantization of the image s salient local features. Finally, a multi-view shape matching scheme is carried out to measure the dissimilarity between two models. Experimental results on the McGill Articulated Shape Benchmark database demonstrate that, our method obtains better retrieval performance compared to the state-of-the-art.
Proceedings Title
The IEEE International Conference on Image Processing (ICIP), 2010
Lian, Z.
and Godil, A.
(2010),
NON-RIGID 3D SHAPE RETRIEVAL USING MULTIDIMENSIONAL SCALING AND BAG-OF-FEATURES, The IEEE International Conference on Image Processing (ICIP), 2010, Hong Kong, HK, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906263
(Accessed October 11, 2025)