Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Nanoscale deformation in polymers revealed by single-molecule super-resolution localization–orientation microscopy

Published

Author(s)

Muzhou Wang, James M. Marr, Marcelo I. Davanco, Jeffrey W. Gilman, James A. Liddle

Abstract

Single-molecule super-resolution microscopy has attracted interest in materials science because of its ability to non-invasively explore nanostructures in real-space, but it also introduces a new set of challenges, including the need to image dense periodic structures, and an increased dependence of localization accuracy and resolution on fluorophore orientation. In this study, we optically image nanolithographically patterned polymer films in order to demonstrate the capabilities of this technique on model structures that are more representative of typical situations in materials science. Using simple labeling procedures and standard optical configurations, we can clearly resolve periodic features of 20 nm half-pitch, and individual features 25 nm  25 nm. Electron microscopy provides a ground truth for direct comparison with the optical images, enabling direct measurement of fluorophore localization error that includes both precision and accuracy. We use this error to derive a general expression for resolution based on a simple statistical argument. Finally, we also determine fluorophore orientation simultaneously with position by comparing their point-spread functions to vectorial diffraction calculations. Although orientation has been identified as a source of localization error, we demonstrate that it can also report changes to the nanoscale environment in films patterned by nanoimprint lithography. By combining super-resolution imaging with orientation for the first time, we can directly detect areas of local nanoscale deformation.
Citation
Materials Horizons
Volume
6
Issue
4
Created January 30, 2019, Updated April 29, 2019