NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Modeling the Inter-Electrode Capacitances of Si CoolMOSTM Transistors for Circuit Simulation in High Efficiency Power Systems
Published
Author(s)
Nanying Yang, Jose M. Ortiz, Tam H. Duong, Allen R. Hefner Jr., Kathleen Meehan
Abstract
The CoolMOSTM transistor is a novel power MOSFET type device that utilizes a super-junction embedded within its drift region in order to improve the trade-off between on-resistance and breakdown voltage. The super-junction results in unique inter-electrode capacitance characteristics that require an advanced modeling approach to accurately represent switching performance. This paper describes a new compact circuit simulator model for the CoolMOSTM transistor and demonstrates the model performance using the Saber simulator for a 650 V, 60 A device. The new model is the first compact model suitable for implementation in the Saber simulator that accurately describes all three inter-electrode capacitances (i.e., gate-drain, gate-source, and drain-source capacitances) for the full operating range of the device. The model is derived using the actual charge distribution within the device rather than assuming a lumped charge or one-dimensional charge distribution. Simulation results are in excellent agreement with measurement results for the new model in contrast to previous modeling approaches used for this device. The compact model developed in this work is also being utilized in the design of a high efficiency soft-switching inverter for electric vehicle motor drives and a high efficiency bidirectional DC-DC converter at ZVS operation.
Proceedings Title
Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE) Conference 2010
Yang, N.
, Ortiz, J.
, Duong, T.
, Hefner, A.
and Meehan, K.
(2010),
Modeling the Inter-Electrode Capacitances of Si CoolMOSTM Transistors for Circuit Simulation in High Efficiency Power Systems, Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE) Conference 2010, Atlanta, GA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905983
(Accessed October 14, 2025)