Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Low Cost Digital Vibration Meter

Published

Author(s)

William V. Payne, Jon Geist

Abstract

This report describes the development of a low cost vibration amplitude sensor. The processes used to develop this sensor involve the use of Micro-Electronic and Mechanical Systems (MEMS) manufacturing techniques. The major mechanical element of the vibration sensor is the cantilever beam which is on the order of 500 m in length. Vibration of the MEMS device in the plane perpendicular to the cantilever beam causes flexing of the beam which produces changes in the resistance of a piezoresistor etched at the base of the beam (spring element). These changes in resistance (and thus voltage) along with a unique signal processing scheme are used to determine the acceleration amplitude of the MEMS device.
Citation
Journal of Research (NIST JRES) -
Volume
112 No. 2

Keywords

approximate root mean square, cantilever accelerometer, micro electro mechanical system, vibration meter

Citation

Payne, W. and Geist, J. (2007), A Low Cost Digital Vibration Meter, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861030 (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created April 1, 2007, Updated February 19, 2017
Was this page helpful?