NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Large Stroke Electrostatic Comb Drive Actuators Enabled by a Novel Flexure Mechanism
Published
Author(s)
Mohammad Olfatnia, Siddharth Sood, Jason J. Gorman, Shorya Awtar
Abstract
This paper reports in-plane electrostatic combdrive actuators with stroke as large as 245 μm that is achieved by employing a novel Clamped Paired Double Parallelogram (C-DPDP) flexure mechanism. The C-DP-DP flexure mechanism design offers high bearing direction stiffness (Kx) while maintaining low motion direction stiffness (Ky), over a large range of motion direction displacement. The resulting high (Kx /Ky) ratio mitigates the on-set of sideways snap-in instability, thereby offering significantly greater actuation stroke compared to existing designs. Further improvement is achieved by reinforcing the individual beams in this flexure mechanism. While the traditional Paired Double Parallelogram (DP-DP) flexure design with comb gap G = 3 μm and flexure beam length L1= 1 mm results in a 50 μm stroke before snap-in, the reinforced C-DP-DP design with the same comb gap and flexure beam length achieves a stroke of 141 μm. Furthermore, this C-DP-DP flexure design provides a 215 μm stroke with G = 4 μm, and a 245 μm stroke with G = 6 μm. The presented work includes closed-form stiffness expressions for the reinforced C-DP-DP flexure, a design procedure for selecting dimensions of the overall comb-drive actuator, micro-fabrication of some representative actuators, and experimental measurements demonstrating the large stroke.
Citation
IEEE Journal of Microelectromechanical Systems (Journal of MEMs)
Olfatnia, M.
, Sood, S.
, Gorman, J.
and Awtar, S.
(2013),
Large Stroke Electrostatic Comb Drive Actuators Enabled by a Novel Flexure Mechanism, IEEE Journal of Microelectromechanical Systems (Journal of MEMs), [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912124
(Accessed October 12, 2025)