NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Identification and Quantification of 8,5'-Cyclo-2'-Deoxyadenosine in DNA by Liquid Chromatography/Mass Spectrometry
Published
Author(s)
M. Dizdaroglu, Pawel Jaruga, H Rodriguez
Abstract
Recent studies suggested that 8,5'-cyclo-2'-deoxyadenosine may play a role in diseases with defective nucleotide-excision repair. This compound is one of the major lesions formed in DNA by hydroxyl radical attack on sugar moiety of 2'-deoxyadenosine. It is likely to be repaired by nucleotide-excision repair rather than by base-excision repair because of a covalent bond between the sugar and base moieties. We studied the measurement of 8,5'-cyclo-2'-deoxyadenosine in DNA by liquid chromatography/isotope-dilution mass spectrometry. A methodology was developed for the analysis of 8,5' cyclo-2'-deoxyadenosine by liquid chromatography in DNA hydrolyzed to nucleosides by a combination of four enzymes, i.e., DNase I, phosphodiesterases I and II, and alkaline phosphatase. Detection by mass spectrometry was performed using atmospheric pressure ionization-electrospray process in the positive ionization mode. Results showed that liquid chromatography/isotope-dilution mass spectrometry is well suited for identification and quantification of 8,5'- cyclo-2'-deoxyadenosine in DNA. Both (5'R)- and (5'S)-diastereomers of 8.5'-cyclo-2'deosyadenosine were detected. The level of sensitivity of liquid chromatography/massspectrometry with selected-ion monitoring amounted to circa 5 fmol of this compound on the column. The yield of 8,5' -cyclo- 2'-deoxyadenosine was measured in DNA in aqueous solution exposed to ionizing radiation at doses from 2.5 to 80 Gray. Gas chromatography/mass spectrometry was also used to measure this compound in DNA. Both techniques yielded similar results. The yield of 8,5'-cyclo-2'-deoxyadenosine was comparable to the yields of some of the other major modified bases in DNA, which were measured using gas chromatography/mass spectrometry. The measurement of 8,5'-cyclo-2'-deoxyadenosine by liquid chromatography/mass spectrometry may contribute to the understanding of its biological properties and its role in diseases with defective nucleotide-excision repair.
Citation
Free Radical Biology and Medicine
Volume
30
Issue
7
Pub Type
Journals
Keywords
8, 5'-cyclo-purine nucleosides, free radicals, mass spectrometry, nucleotide-excision repair, oxidative DNA damage
Dizdaroglu, M.
, Jaruga, P.
and Rodriguez, H.
(2001),
Identification and Quantification of 8,5'-Cyclo-2'-Deoxyadenosine in DNA by Liquid Chromatography/Mass Spectrometry, Free Radical Biology and Medicine
(Accessed October 14, 2025)