Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A Facile Route to the Synthesis of Monodisperse Nanoscale Liposomes Using 3D Microfluidic Hydrodynamic Focusing in a Concentric Capillary Array



Wyatt N. Vreeland, Renee R. Hood, Don L. DeVoe, Francisco J. Atencia, Donna M. Omiatek


A novel microscale device has been developed to enable the one-step continuous flow assembly of monodisperse nanoscale liposomes using three-dimensional microfluidic hydrodynamic focusing (3D-MHF) in a radially symmetric capillary array. The 3D-MHF flow technique displays patent advantages over conventional methods for nanoscale liposome synthesis (i.e., bulk-scale alcohol injection and film hydration and extrusion) through the on-demand manufacture of consistently uniform liposomes at unparalleled rates (factor of 104 liposomes/min increase in production rate relative to state-of- the-art liposome production strategies). Liposomes produced by the 3D-MHF device are of tunable size and have a factor of two improvement in polydispersity over previous MHF methods which can be attributed to entirely radially symmetric diffusion of alcohol-solubilized lipid into an aqueous flow stream. Moreover, the 3D-MHF platform is simple to construct from low-cost, commercial parts, which obviaties the need for advanced microfabrication strategies necessitated by previous MHF nanoparticle synthesis platforms.
Lab on A Chip


liposomes, microfluidics, sheath flow, monodisperse
Created May 14, 2014, Updated November 10, 2018