Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Facile Route to the Synthesis of Monodisperse Nanoscale Liposomes Using 3D Microfluidic Hydrodynamic Focusing in a Concentric Capillary Array

Published

Author(s)

Wyatt N. Vreeland, Renee R. Hood, Don L. DeVoe, Francisco J. Atencia, Donna M. Omiatek

Abstract

A novel microscale device has been developed to enable the one-step continuous flow assembly of monodisperse nanoscale liposomes using three-dimensional microfluidic hydrodynamic focusing (3D-MHF) in a radially symmetric capillary array. The 3D-MHF flow technique displays patent advantages over conventional methods for nanoscale liposome synthesis (i.e., bulk-scale alcohol injection and film hydration and extrusion) through the on-demand manufacture of consistently uniform liposomes at unparalleled rates (factor of 104 liposomes/min increase in production rate relative to state-of- the-art liposome production strategies). Liposomes produced by the 3D-MHF device are of tunable size and have a factor of two improvement in polydispersity over previous MHF methods which can be attributed to entirely radially symmetric diffusion of alcohol-solubilized lipid into an aqueous flow stream. Moreover, the 3D-MHF platform is simple to construct from low-cost, commercial parts, which obviaties the need for advanced microfabrication strategies necessitated by previous MHF nanoparticle synthesis platforms.
Citation
Lab on A Chip
Issue
14

Keywords

liposomes, microfluidics, sheath flow, monodisperse

Citation

Vreeland, W. , Hood, R. , DeVoe, D. , Atencia, F. and Omiatek, D. (2014), A Facile Route to the Synthesis of Monodisperse Nanoscale Liposomes Using 3D Microfluidic Hydrodynamic Focusing in a Concentric Capillary Array, Lab on A Chip, [online], https://doi.org/10.1039/C4LC00334A (Accessed November 5, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created May 14, 2014, Updated November 10, 2018
Was this page helpful?