Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Exciton Dynamics in Monolayer Transition Metal Michalcogenides

Published

Author(s)

Galan A. Moody, John Schaibley, Xiaodong Xu

Abstract

Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population decay and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding.
Citation
The Journal of the Optical Society of America B

Keywords

exciton, two-dimensional materials, recombination

Citation

Moody, G. , Schaibley, J. and Xu, X. (2016), Exciton Dynamics in Monolayer Transition Metal Michalcogenides, The Journal of the Optical Society of America B, [online], https://doi.org/10.1364/JOSAB.33.000C39 (Accessed July 14, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created April 19, 2016, Updated November 10, 2018