NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Enhanced aerodynamic reach of vapor and aerosol sampling for real-time mass spectrometric detection using Venturi-assisted entrainment and ionization
Published
Author(s)
Thomas Forbes, Matthew Staymates
Abstract
Venturi-assisted ENTrainment and Ionization (VENTI) was developed herein, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects and using atmospheric pressure chemical ionization (APCI), VENTI requires no moving parts and only a pressurized gas to generate gas flow and analyte transport, demonstrating the detection of a range of volatile chemical vapors (down to ppb); peroxide- based, nitrate ester, and nitroaromatic explosive vapors (headspace from 40 μg to 5 g samples under various conditions); explosive, narcotic, and mustard gas surrogate aerosols (20 μL plumes); and explosive dust particulate. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10-2 s to 10-1 s and Reynolds numbers on the order of 103 to 104. Venturi-assisted entrainment also successfully enhanced vapor detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction) as well as the overall aerodynamic reach by approximately 3-fold over simple suction, results that were corroborated and observed with laser-light sheet visualization and schlieren imaging. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m2 - 570,000 L) was demonstrated for a 60-minute period without the remote sampling probe, exhibiting detection of chemical vapors (several mL) and the mustard gas surrogate (100 μL) at approximately 3 m stand-off distances within 2 minutes.
Forbes, T.
and Staymates, M.
(2017),
Enhanced aerodynamic reach of vapor and aerosol sampling for real-time mass spectrometric detection using Venturi-assisted entrainment and ionization, Analytica Chimica ACTA, [online], https://doi.org/10.1016/j.aca.2016.12.037, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921513
(Accessed October 7, 2025)