NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Eddy Current Rail Inspection Using AC Bridge Techniques
Published
Author(s)
Andrew D. Koffman, Bryan C. Waltrip, Yicheng Wang
Abstract
AC bridge techniques commonly used for precision impedance measurements have been adopted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored to compensate for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing to more accurately characterize the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking train motion and the Y-axis mimicking trains vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.
Koffman, A.
, Waltrip, B.
and Wang, Y.
(2013),
Eddy Current Rail Inspection Using AC Bridge Techniques, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/jres.118.007
(Accessed October 6, 2025)