Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Data-driven approaches to optical patterned defect detection

Published

Author(s)

Mark-Alexander Henn, Hui Zhou, Bryan M. Barnes

Abstract

Computer vision and classification methods have become increasingly popular in recent years due to ever-increasing computation power. While advances in semiconductor devices are the basis for this growth, few publications have probed the benefits of data-driven methods for improving the defect detection and inspection for such devices. As defects become smaller, threshold-based approaches eventually fail to pick up differences between faulty and non-faulty structures. To overcome these challenges we present machine learning methods including convolutional neural networks (CNN) for image-based defect detection. These images are formed from the simulated scattering off realistic geometries with key defects taking into account line edge roughness, a known and challenging problem in semiconductor manufacturing. A fundamental CNN approach is shown to extend detectability to these smaller defects, even those that are more than 30 times smaller than the inspection wavelength.
Citation
OSA Continuum
Volume
2
Issue
9

Keywords

Metrology, Defect understanding, Three-dimensional microscopy
Created September 5, 2019, Updated September 10, 2019