NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Comparison of hp-adaptive Strategies for Elliptic Partial Differential Equations (long version)
Published
Author(s)
William F. Mitchell, Marjorie A. McClain
Abstract
The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving partial differential equations because it can achieve a convergence rate that is exponential in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h version of the finite element method, a posteriori error estimates can be used to determine where the mesh needs to be refined, but a single error estimate can not simultaneously determine whether it is better to do the refinement by h or by p. Several strategies for making this determination have been proposed over the years. In this paper we summarize these strategies and present the results of a numerical experiment to study the convergence properties of these strategies.
Mitchell, W.
and McClain, M.
(2011),
A Comparison of hp-adaptive Strategies for Elliptic Partial Differential Equations (long version), NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7824
(Accessed October 11, 2025)