Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation- and Hydroxyl Radical-Induced Products 4,6-Diamino-5-Formamidopyrimidine and 2,6-Diamino-4-Hydroxy-5-Formamidopyrimidine from DNA

Published

Author(s)

Pawel Jaruga, R Jabil, Amanda K. McCullough, H Rodriguez, M Miral Dizdar, R S. Lloyd

Abstract

A DNA glycosylase specific for UV radiation-induced pyrimidine dimers has been identified from chlorella virus Paramecium bursaria chlorella virus-1. This enzyme (Chlorella virus Pyrimidine dimer glycosylase [cv-pdgl) exhibits a 41% amino acid identity with endonuclease V from bacteriophage T4 (T4 pyrimidine dimer glycosylase [T4-pdgl), which is also specific for pyrimidine dimers. However, cv-pdg possesses a higher catalytic efficiency and broader substrate specificity than T4-pdg. The latter excises 4.6-diamino-5-formamidopyrimidine (FapyAde), a UV radiation- and hydroxyl radical-induced monomeric product of adenine in DNA. Using gas chromatography/isotope-dilution mass spectrometry and γ-irradiated DNA, we show in this work that cv-pdg also displays a catalytic activity for excision of FapyAde and, in addition, it excises 2, 6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). Kinetic data show that FapyAde is a better substrate of cv-pdg than FapyGua. On the other hand, cv-pdg possesses a greater efficiency for the extension FapyAde than T4-pdg. These two enzymes exhibit different substrate specificities despite substantial structural similarities.
Citation
Photochemistry and Photobiology
Volume
75
Issue
2

Keywords

base-excision repair, chlorella virus, DNA glycosylase, formamidopyrimidine, gas chromatography/mass spectrometry, oxidative DNA damage

Citation

Jaruga, P. , Jabil, R. , McCullough, A. , Rodriguez, H. , , M. and Lloyd, R. (2002), Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation- and Hydroxyl Radical-Induced Products 4,6-Diamino-5-Formamidopyrimidine and 2,6-Diamino-4-Hydroxy-5-Formamidopyrimidine from DNA, Photochemistry and Photobiology (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created February 1, 2002, Updated February 19, 2017
Was this page helpful?