Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Assessing Chemical Heterogeneity at the Nanoscale in Mixed-Ligand Metal-Organic Frameworks with the PTIR Technique



Aaron M. Katzenmeyer, Jerome Canivet, Glenn Holland, David Farrusseng, Andrea Centrone


Metal-organic frameworks (MOFs), are crystalline, micro to mesoporous functional materials consisting of inorganic clusters interconnected by organic linkers. The possibility of tailoring the chemical functionality and pore size while maintaining the framework structure, a concept termed isoreticularity,[1] makes these materials promising for adsorption based processes, such as heat pumps, catalysis, and particularly photo-catalysis, gas storage, drug delivery, sensing and imaging. To target those applications isoreticular MOFs composed of mixtures of linkers, referred to as multivariate MOFs or MixMOFs, is one of the latest achievements in the field. However, along with the benefits of multivariate MOF complexity comes the challenge of spatially resolving the distribution of the constituent building blocks within MOF crystallites. For example, crystal homogeneity is a prerequisite for advanced applications in catalysis or sensing but determining the chemical composition at the nanoscale in such materials remains elusive due to the limited spatial resolution of conventional techniques. This lack of spatially resolved information hinders fundamental understanding of these materials and consequently the ability to engineer them for greatest efficacy. In this work, the local chemical composition of individual MixMOF micro-crystals is determined for the first time with nanoscale resolution using the Photo Thermal Induced Resonance (PTIR) technique, a novel method that combines the lateral resolution of atomic force microscopy (AFM) with the chemical specificity of infrared (IR) spectroscopy. PTIR experiments show that MixMOFs isoreticular to In-MIL-68, made either directly from solution or by post-synthetic linker exchange are homogeneous down to a length scale of ≈ 100 nm. Additionally, we report an an in situ process for engineering anisotropic domains in MOFs with a concentration gradient occurring within ≈ 600 nm, as revealed by PTIR chemical maps.
Angewandte Chemie-International Edition


Nanoscale Chemical Imaging, MOFs, PTIR


Katzenmeyer, A. , Canivet, J. , Holland, G. , Farrusseng, D. and Centrone, A. (2014), Assessing Chemical Heterogeneity at the Nanoscale in Mixed-Ligand Metal-Organic Frameworks with the PTIR Technique, Angewandte Chemie-International Edition, [online],, (Accessed July 13, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created March 9, 2014, Updated October 12, 2021