Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A 3He beam stop for minimizing gamma-ray and fast-neutron background

Published

Author(s)

Danyal J. Turkoglu, Robert G. Downing, Wangchun Chen, Dagistan Sahin, Jeremy C. Cook

Abstract

Prompt gamma-ray activation analysis facilities with high neutron currents (≥109 s-1) generate triton-induced fast neutrons from 6Li-loaded collimators and beam stops at rates that soon damage gamma-ray detectors. We develop an alternative beam stop design using 3He gas that produces negligible gamma-ray and fast-neutron background following neutron absorption. Replacing a 6Li glass beam stop with a test cell containing 2.5 MPa·cm of 3He reduced fast neutron production by 73%. An optimal 3He beam stop design with a 100-µm-thick entrance window, modeled using MCNP6, enables operation of detectors closer to the beam stop.
Citation
Journal of Radioanalytical and Nuclear Chemistry
Volume
311
Issue
2

Keywords

prompt gamma-ray activation analysis, instrument design, Monte Carlo radiation transport, neutron shielding, gamma-ray background, helium, lithium, boron

Citation

Turkoglu, D. , Downing, R. , Chen, W. , Sahin, D. and Cook, J. (2016), A 3He beam stop for minimizing gamma-ray and fast-neutron background, Journal of Radioanalytical and Nuclear Chemistry, [online], https://doi.org/10.1007/s10967-016-4954-7 (Accessed October 8, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created August 6, 2016, Updated November 10, 2018
Was this page helpful?