Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

X-ray Testbed for Breakthrough Catalyst Measurements


NIST’s Material Measurement Laboratory and Physical Measurement Laboratory are developing a first-of-kind X-ray testbed for operando monitoring of catalytic reactions. The testbed will provide unprecedented access to the behavior of carbon-based intermediates and the electronic structure of catalysts via a minimally invasive probe.

Catalyst Testbed


Interested in collaborating? See below


What does this project do for industry?

Flowchart showing the journey from reactant to product. On the left it is a black box, while on the right the flowchart is revealed

Current measurement techniques are unable to follow the reaction pathways during catalysis and are limited to observing only the end products or looking at catalysts outside of realistic reaction conditions. Our new Resonant Inelastic X-ray Scattering (RIXS) spectrometer, together with kinetic modeling and advances in theoretical spectroscopy, will identify specific intermediates and reaction pathways. With this knowledge, the catalysts can be improved to select for specific reaction pathways and desired end products. 

What technical challenges are we trying to solve?

Existing RIXS beamlines require tens of minutes to hours per acquisition. This prohibits high-throughput operando measurements and leads to high X-ray doses that can damage the sample. By employing energy sensitive X-ray detectors, as opposed to traditional wavelength dispersive monochromators, we will greatly improve our collection efficiency while simultaneously lowering the required X-ray dose. This effort will require substantial improvements to the design and fabrication of the transition-edge sensor arrays as well as new beamline technologies to separate the high-vacuum of the X-ray beam path from a sample at ambient pressure and high temperatures. 


The Team



RIXS map
Calculated resonant inelastic X-ray spectra

The theory team (Tom Allison and John Vinson) develops tools to determine the likely movement of atoms and molecules during reactions and, from these atomic arrangements, predict the resulting X-ray spectra.

X-ray Detector

The detector team (Galen O’Neil, Joel Ullom, Kelsey Morgan and more in the Quantum Sensors Group) is developing the most powerful soft X-ray detector for carbon chemistry by more than 100x. We rely on microcalorimeters operating below 100 mK for high efficiency and excellent energy resolution.

Picture of a transition edge sensor array
Transition edge sensor
Schematic drawing of how a transition edge sensor works
Transition edge sensor schematic
Beamline & reaction chamber

Beamline and reaction chamber schematic

The beamline and reactor team (Charles Titus, Daniel Fischer, and Evan Jahrman) is developing reaction chambers compatible with both real-world reaction conditions and the requirements of soft X-rays.  These experimental set-ups will be integrated with NIST’s soft X-ray beamline, SST-1, located at NSLS-II.



want to be involved?

We have two different mechanisms for collaborating with us on this project:

The NRC Postdoctoral Program

The NRC research associateship program has opportunities for research related to this project (eligibility requirements include US citizenship). If you are interested or have any questions, please email the researchers listed on the NRC postings. Application are evaluated twice a year, Feb 1 and Aug 1, and we recommend contacting potential advisors well in advance of these deadlines.

Research Collaborations

Collaborations are available to US and non-US citizens. Please email the contacts in individual collaboration descriptions below for more information.

Spectrometer collaboration

We are seeking a postdoc collaborator to work with NIST researchers to help us build the most efficient X-ray spectrometer for carbon chemistry using sub-Kelvin transition edge sensor microcalorimeters. This effort requires breakthroughs in superconducting device design, microfabrication, digital signal processing and many other areas. A strong experimental background is required, experience with one or more areas we’ve called out above is valuable. Don’t feel like you have to tick all the boxes, we need strong experimentalists with many different backgrounds. Potential collaborators with a PhD or soon to have a PhD in chemistry, physics, electrical engineering, mechanical engineering or related fields are encouraged to contact galen.oneil [at] (galen[dot]oneil[at]nist[dot]gov).

The spectrometer team is located in Boulder, CO.



Created November 23, 2022, Updated May 15, 2023