Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Kelsey Morgan (Fed)

Dr. Kelsey Morgan is a research physicist the Quantum Calorimeters Group within the Quantum Electromagnetics Division at NIST Boulder and research faculty at the University of Colorado Boulder. Dr. Morgan's research focuses on developing superconducting detectors, primarily transition-edge sensors, for X-ray and gamma ray spectroscopy. Application areas of interest for these detectors include astronomy, chemistry, biology, materials science, nuclear security, and measurement standards. Dr. Morgan is also interested in studying the physics of superconducting thin films and superconducting detectors, and advancing multiplexing techniques for large arrays of superconducting detectors.

Research Projects

Publications

Application of hard x-ray and gamma-ray TES microcalorimeters at an accelerator facility

Author(s)
Takeshi Saito, Shinji Okada, Yuichi Toyoma, Toshiyuki Azuma, Gonçalo Baptista, Daniel Becker, Douglas Bennett, William Doriese, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Tasuku HAYASHI, Yuto Ichinohe, Josef Imrek, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Naritoshi Kawamura, John Mates, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Takuma Okumura, Nancy Paul, Daniel Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Motonobu Tampo, Joel Ullom, Izumi Umegaki, Joel Weber, Shinya Yamada, Daikang Yan
The x-ray spectroscopy of the muonic atom has attracted atomic, nuclear, and particle physicists since its discovery. The properties of a muonic atom, such as

Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED

Author(s)
Gonçalo Baptista, Shikha Rathi, Michael Roosa, Quentin Senetaire, Jonas Sommerfeldt, Toshiyuki Azuma, Daniel Becker, Francois Butin, Ofir Eizenberg, Joseph Fowler, Hiroyuki Fujioka, Davide Gamba, Nabil Garroum, Mauro Guerra, Tadashi Hashimoto, Takashi Higuchi, Paul Indelicato, Jorge Machado, Kelsey Morgan, Francois Nez, Jason Nobles, Ben Ohayon, Shinji Okada, Daniel Schmidt, Daniel Swetz, Joel Ullom, Pauline Yzombard, Marco Zito, Nancy Paul
PAX (antiProtonic Atom X-ray spectroscopy) is a new experiment with the aim to test strong-field quantum electrodynamics (QED) effects by performing high

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high

Extracting the electronic structure of light elements in bulk materials through a Compton scattering method in the readily accessible hard X-ray regime

Author(s)
Veenavee Kothalawala, Tejas Guruswamy, orlando Quaranta, Umeshkumar Manibhai Patel, Andrey Yakovenko, keith taddei, Meiying Zhang, Kelsey Morgan, Joel Weber, Daikang Yan, Daniel Swetz, Ilja Makkonen, Hemantha Kumar Yeddu, Arun Bansil, Antonino Miceli, Johannes Nokelainen, Bernardo Barbiellini
Our Compton profile measurements of Ti and TiH2 using readily available hard X-ray radiation at 27.5 keV, detected by both a Hitachi Vortex silicon-drift
Created June 1, 2019, Updated February 8, 2024