Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Plastic Pollution Measurement Science

Summary

While plastics have yielded immense benefits to society, discarded plastics or plastic pollution has become a pervasive highly visible problem especially in the marine environment.  Plastic pollution is comprised of many different types of plastics with different shapes and chemical additives.  Chemical methods are therefore needed to answer fundamental questions about quantities, types, sources, transport, fate and impact of plastic pollution in all components of our environment.

Description

Photograph of plastic debris consisting of large and small fragments with a variety of shapes and colors.

Plastic marine debris from a windward beach of the Main Hawaiian Islands catalogued and awaiting polymer identification.

Credit: NIST

NIST seeks to be an international leader and magnet for plastic pollution chemical measurement science. While plastics have yielded immense benefits to society, plastic pollution has become a pervasive global environmental threat requiring urgent understanding and solutions.  Plastic pollution is comprised of many different types of plastics (polymers) and chemical additives and spans an enormous range of sizes, from nanoplastics to megaplastics. Chemical methods are needed across this size continuum to answer fundamental questions about quantities, sources, transport, fate, impacts, and recycling of plastic pollution in all components of our environment.

Reliable measurement methods of plastic quantities and characteristics (e.g. particle size, shape, polymer identity, chemical additive concentration) in complex environmental matrices are still in development. Best practices, reference materials, and inter-laboratory exercises can harmonize plastic pollution measurements. Armed with the most accurate information collected from the most optimal methods, policymakers, industry and the public can target the most effective solutions, such as prevention at the source or recycling. 

NIST CSD BESG scientists are currently focused on five research activities. Methods and technologies developed are transferred to faculty, staff, and students at the Center for Marine Debris Research to answer urgent, fundamental and applied questions regarding plastic marine debris. This work is part of NIST's Circular Economy program, which supports the nation’s need to transition away from a linear economy model in which materials are extracted from the environment, manufactured into products that are discarded toward an economy in which the atoms and molecules that make up plastic products are reused and retain their value.

 

Microplastic pollution
Microplastic pollution at the high tide line of a windward beach in the Main Hawaiian Islands.
Credit: Susan Paulson
Photograph of an analytical instrument and a computer monitor displaying an FT-IR spectrum.
Attenuated Total Reflectance Fourier transform infrared spectroscopy (ATR FT-IR) commonly used to identify polymers of plastic marine debris.
Credit: NIST

RELATED NIST PROJECTS

Measurements and Standards for Contaminants in Wildlife Matrices
National long-term monitoring project of plastic ingestion by Pacific sea turtles (BEMAST)

Related Standard Reference Materials

SRM 

Title 

Status 

SRM 1453 

Thermal Conductivity - Expanded Polystyrene Board 

out of stock 

SRM 1473c 

Low Density Polyethylene Resin 

 

SRM 1474b 

Polyethylene Resin 

 

SRM 1475a 

Linear Polyethylene (Whole Polymer) 

out of stock 

SRM 1476a 

Branched Polyethylene Resin 

 

SRM 1478 

Polystyrene (Narrow Molecular Weight Distribution) 

 

SRM 1479 

Polystyrene (Narrow Molecular Weight Distribution) 

 

SRM 1482a 

Linear Polyethylene Narrow Molecular Mass Distribution (13 600 g/mol) 

out of stock 

SRM 1483a 

Linear Polyethylene Narrow Molecular Mass Distribution (32 100 g/mol) 

out of stock 

SRM 1484a 

Polyethylene, Linear 

 

SRM 1487 

Poly (methyl methacrylate) 

discontinued 

SRM 1488 

Poly(methyl methacrylate) 29 K Narrow Molecular Weight Distribution 

 

SRM 1690 

Polystyrene Spheres (Nominal Diameter 1 µm) 

out of stock 

SRM 1691 

Polystyrene Spheres (Nominal Diameter 0.3 µm) 

out of stock 

SRM 1961 

Nominal 30 micrometer Diameter Polystyrene Spheres 

 

SRM 1963a 

Polystyrene Spheres (Nominal Diameter 100 nm) 

out of stock 

SRM 1964 

Polystyrene Spheres (Nominal Diameter 60 nm) 

 

SRM 1965 

Microsphere Slide (10 micrometer Polystyrene Spheres) 

discontinued 

SRM 2855 

Additive Elements in Polyethylene 

 

SRM 2859 

Restricted Elements in Polyvinyl Chloride 

 

SRM 2860 

Phthalates in Polyvinyl Chloride 

 

SRM 2861 

Restricted Elements in Polyvinyl Chloride 

 

SRM 2870 

Relative Permittivity and Loss Tangent 1422 Cross-Linked Polystyrene 

discontinued 

SRM 2885 

Polyethylene (Mass-Average Molar Mass [MW] 6 280 g/mol) 

out of stock 

SRM 2886 

Polyethylene (Mass-Average Molar Mass [MW] 87 000 g/mol) 

out of stock 

SRM 2887 

Polyethylene (Mass-Average Molar Mass [MW] 196 400 g/mol) 

out of stock 

SRM 705a 

Polystyrene (Narrow Molecular Weight Distribution) 

 

SRM 706a 

Polystyrene (Broad Molecular Mass Distribution) 

 

SRM 8540 

IAEA-CH-7 (Carbon and Hydrogen Isotopes in Polyethylene Foil) 

 

ASSOCIATED PUBLICATIONS

1.  Seeley, M. E., Hale, R. C., Zwollo, P., Vogelbein, W., Verry, G., and Wargo, A. R., "Microplastics exacerbate virus-mediated mortality in fish," Science of the Total Environment, 866, (2023). 

2.  Seeley, M. E. and Lynch, J. M., "Previous successes and untapped potential of pyrolysis-GC/MS for the analysis of plastic pollution," Analytical and Bioanalytical Chemistry, (2023). 

3.  Kotula, A. P., Orski, S. V., Brignac, K. C., Lynch, J. M., and Heilala, B. M. J., "Time-gated Raman spectroscopy of recovered plastics," Marine Pollution Bulletin, 181, (2022). 

4.  Petersen, E. J., Barrios, A. C., Henry, T. B., Johnson, M. E., Koelmans, A. A., Bustos, A. R. M., Matheson, J., Roesslein, M., Zhao, J., and Xing, B. S., "Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles," Environ. Sci. Technol., 56, 15192-15206 (2022). 

5.  Savoca, M. S., Kuhn, S., Sun, C. J., Avery-Gomm, S., Choy, C. A., Dudas, S., Hong, S. H., Hyrenbach, K. D., Li, T. H., Ng, C. K. Y., Provencher, J. F., and Lynch, J. M., "Towards a North Pacific Ocean long-term monitoring program for plastic pollution: A review and recommendations for plastic ingestion bioindicators," Environmental Pollution, 310, (2022). 

6.  Zangmeister, C. D., Radney, J. G., Benkstein, K. D., and Kalanyan, B., "Common Single-Use Consumer Plastic Products Release Trillions ofSub-100 nm Nanoparticles per Liter into Water during Normal Use," Environ. Sci. Technol., 56, 5448-5455 (2022). 

7.  Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch, J., Hapich, H., Primpke, S., De Frond, H., Rochman, C., and Herodotou, O., "Microplastic Spectral Classification Needs an Open Source Community: Open Specy to the Rescue!," Analytical Chemistry, 93, 7543-7548 (2021). 

8.  Hyrenbach, K. D., McGinnis, Z., Page, K., Rapp, D., Horgen, F. D., and Lynch, J. M., "Assessment of plastic ingestion by pole-caught pelagic predatory fish from O'ahu, Hawai'i," Aquatic Conservation-Marine and Freshwater Ecosystems, 31, 408-419 (2021). 

9.  Cowger, W., Booth, A. M., Hamilton, B. M., Thaysen, C., Primpke, S., Munno, K., Lusher, A. L., Dehaut, A., Vaz, V. P., Liboiron, M., Devriese, L. I., Hermabessiere, L., Rochman, C., Athey, S. N., Lynch, J. M., De Frond, H., Gray, A., Jones, O. A. H., Brander, S., Steele, C., Moore, S., Sanchez, A., and Nel, H., "Reporting Guidelines to Increase the Reproducibility and Comparability of Research on Microplastics," Applied Spectroscopy, 74, 1066-1077 (2020). 

10.  Brignac, K. C., Jung, M. R., King, C., Royer, S. J., Blickley, L., Lamson, M. R., Potemra, J. T., and Lynch, J. M., "Marine Debris Polymers on Main Hawaiian Island Beaches, Sea Surface, and Seafloor," Environ. Sci. Technol., 53, 12218-12226 (2019). 

11.  Currie, J. J., Stack, S. H., Brignac, K. C., and Lynch, J. M., "Nearshore sea surface macro marine debris in Maui County, Hawaii: Distribution, drivers, and polymer composition," Marine Pollution Bulletin, 138, 70-83 (2019). 

12.  Gove, J. M., Whitney, J. L., McManus, M. A., Lecky, J., Carvalho, F. C., Lynch, J. M., Li, J. W., Neubauer, P., Smith, K. A., Phipps, J. E., Kobayashi, D. R., Balagso, K. B., Contreras, E. A., Manuel, M. E., Merrifield, M. A., Polovina, J. J., Asner, G. P., Maynard, J. A., and Williams, G. J., "Prey-size plastics are invading larval fish nurseries," Proceedings of the National Academy of Sciences of the United States of America, 116, 24143-24149 (2019). 

13.  Clukey, K. E., Lepczyk, C. A., Balazs, G. H., Work, T. M., Li, Q. X., Bachman, M. J., and Lynch, J. M., "Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris," Science of the Total Environment, 610, 402-411 (2018). 

14.  Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, C. V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S. J., Hyrenbach, K. D., Jensen, B. A., and Lynch, J. M., "Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms," Marine Pollution Bulletin, 127, 704-716 (2018). 

15.  Jung, M. R., Balazs, G. H., Work, T. M., Jones, T. T., Orski, S. V., Rodriguez, C. V., Beers, K. L., Brignac, K. C., Hyrenbach, K. D., Jensen, B. A., and Lynch, J. M., "Polymer Identification of Plastic Debris Ingested by Pelagic-Phase Sea Turtles in the Central Pacific," Environ. Sci. Technol., 52, 11535-11544 (2018). 

16.  Jennifer M. Lynch. “Quantities of Marine Debris Ingested by Sea Turtles: Global Meta-Analysis Highlights Need for Standardized Data Reporting Methods and Reveals Relative Risk.” Environ.Sci.Technol. 52 (21):12026-12038, 2018. 

17.  Clukey, K. E., Lepczyk, C. A., Balazs, G. H., Work, T. M., and Lynch, J. M., "Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic Pacific longline fisheries," Marine Pollution Bulletin, 120, 117-125 (2017).

Created January 23, 2020, Updated November 14, 2023