Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.


Our objective is to develop the measurement methodology, standards and analysis necessary for the US auto industry and base metal suppliers to transition from a strain-based to a stress-based design system for auto body components, and successfully transfer this technology to our customers in industry. With this knowledge, the US automotive industry will be able to transition to new advanced and lightweight materials more easily, as more accurate data and material models will lead to more accurate die designs, reducing die tryouts and new model development costs. 


The US auto industry spends $600M per year fixing and tweaking forming dies that do not make correct parts. The primary reason that the dies are inaccurate is that the computer models of the dies utilize materials models that are inaccurate. Upon surveying our industrial partners, we determined that a key NIST role in addressing this problem lies in developing new mechanical testing methods and metrology, and also developing a fundamental understanding of the interplay between multiaxial strain behavior and sheet microstructure.


Springback Cup Test

We have developed a technique where, for the first time, the sheet's stress-strain response can be measured along non-linear multiaxial paths. This provides unique data on how the multiaxial flow surface changes with plastic strain, and this can be used to modify materials models used by industry. Concurrently, we also measure the evolving crystallographic texture of the sheet and the surface roughness, to develop a microstructural understanding of the materials' deformation response.

Major Accomplishments

For information on the individual experimental projects, see the list of links at right under "Related Programs and Projects" --->

The tensile multiaxial yield surface of 5754 aluminum alloy sheet was measured from initial yield up to failure for the first time. The initial shape of the surface closely approximates an ellipse, as predicted by most plasticity models of forming. However, as the strain levels increase to levels typical of forming (5% to 20% plastic strain), the locus evolves asymmetrically, and an apex forms in the direction of balanced biaxial (BB) straining. At the highest strain levels, the error between the predicted and the measured flow stresses exceeds 25%.


Yield locus evolution

Yield locus evolution 


Created November 26, 2008, Updated June 4, 2020