Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Son T. Le (Assoc)

Son T. Le is a Research Associate in the Alternative Computing Group in the Nanoscale Device Characterization Division of the Physical Measurement Laboratory (PML). He received his B.S. at Hanoi University of Science and Technology, Hanoi, Vietnam in Engineering Physics and his Ph.D. at Brown University, Providence, RI in Physics. He specializes in fabrication and electrical transport measurements of semiconductor and quantum devices. He is also interested in the applications of those devices in high-performance switching, sensing, and bio-sensing.

Publications

Are 2D Interfaces Really Flat?

Author(s)
Zhihui Cheng, Huairuo Zhang, Son Le, Hattan Abuzaid, Guoqing Li, Yifei Yu, Albert Davydov, Linyou Cao, Aaron Franklin, Curt A. Richter
Two-dimensional (2D) materials are amenable to external mechanical deformation and thus forming bubbles and wrinkles. However, little is known about the

Edge channels of broken-symmetry quantum Hall states in graphene visualized by atomic force microscopy

Author(s)
Joseph A. Stroscio, Sungmin Kim, Johannes Schwenk, Daniel T. Walkup, Yihang Zeng, Fereshte Ghahari, Son T. Le, Marlou R. Slot, Julian Berwanger, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Franz Giessibl, Nikolai Zhitenev, Cory Dean
The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded and brought into focus the concept of topological order in physics. The

Substrate-mediated hyperbolic phonon polaritons in MoO3

Author(s)
Jeffrey Schwartz, Son T. Le, Sergiy Krylyuk, Curt A. Richter, Albert Davydov, Andrea Centrone
Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent charge oscillations that exist in strongly optically anisotropic, two

Patents (2018-Present)

Closed-loop Controlled Chemical Apparatus

NIST Inventors
Arvind Balijepalli , Curt A. Richter and Son T. Le
A closed-loop controlled chemical apparatus includes: a compound sensor including: an analyte sensor and that: produces, by the analyte sensor, a voltage signal; a reference sensor in electrical communication with the analyte sensor; a transistor including a gate terminal such that a drain current
Created August 3, 2019, Updated December 8, 2022