Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Miral Dizdaroglu

NIST Fellow

Doctor of Natural Sciences (Dr. rer. Nat.)
Doctor Honoris Causa (Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland)
Doctor Honoris Causa (Dokuz Eylul University, Izmir, Turkey)

DNA Damage and Repair

Oxidative stress is produced in cells by oxygen-derived species resulting from cellular metabolism and from interaction with cells of exogenous sources such as carcinogenic compounds, redox-cycling drugs and ionizing radiations. DNA damage caused by oxygen-derived species including free radicals is the most frequent type encountered by aerobic cells. When this type of damage occurs to DNA, it is called oxidative DNA damage and it can produce a multiplicity of modifications in DNA including base and sugar lesions, strand breaks, DNA-protein cross-links and base-free sites. Accurate measurement of these modifications is essential for understanding of mechanisms of oxidative DNA damage and its biological effects. Numerous DNA lesions have been identified in cells and tissues at steady-state levels and upon exposure to free radical-generating systems. Data accumulated over many years clearly show that oxidative DNA damage plays an important role in a number of disease processes. Thus, oxidative DNA damage is implicated in carcinogenesis and neurodegenerative diseases such as Alzheimer's disease. There is also strong evidence for the role of this type of DNA damage in the aging process. The accumulation of oxidative DNA damage in non-dividing cells is thought to contribute to age-associated diseases. DNA damage is countered in cells by DNA repair, which is a basic and universal process to protect the genetic integrity of organisms. The genomes of organisms encode DNA repair enzymes that continuously monitor chromosomes to correct DNA damage. Multiple processes such as base- and nucleotide-excision pathways exist to repair the wide range of DNA damages. If left unrepaired, oxidative DNA damage can lead to detrimental biological consequences in organisms, including cell death, mutations and transformation of cells to malignant cells. Therefore, DNA repair is regarded as one of the essential events in all life forms. There is an increasing awareness of the importance of oxidative DNA damage and its repair to human health. Thus, it becomes exceedingly important to understand, at the fundamental level, the mechanisms of oxidative DNA damage, and its processing by DNA repair enzymes as well as how unrepaired DNA lesions may lead to cytotoxicity, mutagenesis and eventually to diseases and aging. More detailed knowledge of mechanisms of DNA damage and repair might allow us to modulate DNA repair. This could lead to drug developments and clinical applications including the improvement of cancer therapy by inhibiting DNA repair in drug- or radiation-resistant tumors and/or the increase in the resistance of normal cells to DNA damage by overexpressing DNA repair genes.

Journal Editorships

  • Member of the Editorial Board of Cancer Biomarkers
  • Member of the Editorial Board of Turkish journal of Biochemistry
  • Past Member of the Editorial Board of Free Radical Biology & Medicine
  • Past Member of the Editorial Board of Free Radical Research
  • Past Member of the Editorial Board of Mechanisms of Ageing and Development
  • Guest Editor of Free Radical Biology & Medicine for Serial Review entitled “Oxidative DNA Damage and Repair.”

Conferences Organized

  • Organizer and Director of the NATO Advanced Study Institute on "DNA Damage and Repair; Oxygen Radical Effects, Cellular Protection and Biological Consequences," held on October 13-24, 1997 in Antalya, Turkey
  • Organizer and Chairperson of the "IXth International Workshop on Radiation Damage to DNA" held on May 13-17, 2006 in Antalya, Turkey.

h-Index
74 (according to Web of Science)
88 (according to Google Scholar)

 

Number of citations
20069 (according to Web of Science)
27603 (according to Google Scholar)

 

Detailed list of Dr. Dizdaroglu's Publications
 

Detailed list of Dr. Dizdaroglu's Invited Presentations

Awards

  • Hillebrand Prize of the Washington DC Section of the American Chemical Society, 1989
  • Science Award of the Scientific and Technological Research Council of the Republic of Turkey, 1993
  • Silver Medal Award of the United States Department of Commerce, 1993
  • Turkish-American of the Year for Excellence in Science Award of the Assembly of the Turkish-American Associations in the USA, 1993
  • Doctor Honoris Causa (Honorary Doctorate) from Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland, 2000
  • Outstanding Achievement in Science Award of the Assembly of the Turkish-American Associations in the USA, 2001
  • Gold Medal Award of the United States Department of Commerce, 2005
  • Fellow of the National Institute of Standards and Technology (NIST Fellow), 2006
  • Member of the Turkish Academy of Sciences, 2008
  • Doctor Honoris Causa (Honorary Doctorate) from Dokuz Eylul University, Izmir, Turkey, 2009
  • Samuel Wesley Stratton Award of the National Institute of Standards and Technology, 2010

Publications

Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1

Author(s)
Irina G. Minko, Vladimir Vartanian, Naoto Tozaki, Erdem Coskun, Sanem Hosbas Coskun, Pawel Jaruga, J Yeo, M.P. Stone, M Egli, M Miral Dizdar, Amanda K. McCullough, R S. Lloyd
Pre-mRNA encoding human NEIL1 undergoes editing by adenosine deaminase ADAR1 that converts a single adenosine to inosine, and this conversion results in an

Characterization of Rare NEIL1 Variants Found in East Asian Populations

Author(s)
Irina G. Minko, Vladimir Vartanian, Naoto Tozaki, Oskar Linde, Pawel Jaruga, Sanem Hosbas Coskun, Erdem Coskun, Chunfeng Qu, Huan He, Taoyang Chen, Qianqian Song, Yuchen Jiao, Michael Stone, Martin Egli, M Miral Dizdar, Amanda K. McCullough, R S. Lloyd
The combination of chronic dietary exposure to the fungal toxin, aflatoxin B1 (AFB1), and hepatitis B viral (HBV) infection is associated with an increased risk
Created October 9, 2019