Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Karen Grutter

Karen Grutter is an NRC Postdoctoral Researcher in the Microsystems and Nanotechnology Division. She received a B.S. in Engineering Physics from Case Western Reserve University and a Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley. For her doctoral research, she designed, fabricated, and characterized optical whispering-gallery mode resonators for use in optomechanical reference oscillators and photonic integrated circuits. Karen is working with Kartik Srinivasan developing techniques for adding on-chip tunability to cavity optomechanical systems for applications in signal manipulation and sensing.

Selected Publications

  • An integrated, silica-based, MEMS-actuated, tunable-bandwidth optical filter with low minimum bandwidth, K. E. Grutter, A. Yeh, A. Grine, and M. C. Wu, in CLEO: Science and Innovations, paper CTh4F.3 (Optical Society of America, 2013).
  • A platform for on-chip silica optomechanical oscillators with integrated waveguides, K. E. Grutter, A. Grine, M.-K. Kim, N. Quack, T. Rocheleau, C. T. Nguyen, and M. C. Wu, in CLEO: Science and Innovations, paper CW1M.5 (Optical Society of America, 2012).
  • Continuous control of liquid crystal pretilt angle from homeotropic to planar, K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, Applied Physics Letters 90, 194102 (2007).

Publications

Optomechanical Quantum Correlations at Room Temperature

Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Jacob M. Taylor
By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical forces at a level

Optomechanical Quantum Correlations

Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Nikolai N. Klimov, Zeeshan Ahmed, Jacob M. Taylor
We present methods to measure optical quantum correlations arising from an optomechanical interaction even when large classical noise sources are present. We

The Nanolithography Toolbox

Author(s)

Krishna Coimbatore Balram, Daron A. Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Richard J. Kasica, Christopher B. Wallin, Ian J. Gilbert, Brian A. Bryce, Gregory Simelgor, Juraj Topolancik, Nicolae Lobontiu, Yuxiang Liu, Pavel Neuzil, Vojtech Svatos, Kristen A. Dill, Neal A. Bertrand, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Kartik A. Srinivasan, Samuel M. Stavis, Vladimir A. Aksyuk, James A. Liddle, Slava Krylov, Bojan R. Ilic

This article describes a platform-independent software package for scripted lithography pattern layout generation and complex processing. The Nanolithography

Nanolithography Toolbox

Author(s)

Bojan R. Ilic, Krishna Coimbatore Balram, Daron A. Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Liya Yu, Neal A. Bertrand, Samuel M. Stavis, Vladimir A. Aksyuk, James A. Liddle, Brian A. Bryce, Nicolae Lobontiu, Yuxiang Liu, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Pavel Neuzil, Vojtech Svatos, Slava Krylov, Christopher B. Wallin, Ian J. Gilbert, Kristen A. Dill, Richard J. Kasica, Kartik A. Srinivasan, Gregory Simelgor, Juraj Topolancik

Created March 20, 2019, Updated May 29, 2020