Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Justyna Zwolak (Fed)

Mathematician

Justyna Zwolak is a Scientist in the Applied and Computational Mathematics Division at National Institute of Standards and Technology in Gaithersburg, MD. She received an M.Sc. in Mathematics from The Faculty of Mathematics and Informatics, Nicolaus Copernicus University, and a Ph.D. in Physics from the Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, in Toruń, Poland. She subsequently was a research associate in the Department of Physics at Oregon State University, at the STEM Transformation Institute at Florida International University, and an assistant research scholar in the Joint Center for Quantum Information and Computer Science at University of Maryland on College Park, MD. 

Her past research pursuits range from quantum information theory and machine learning to complex network analysis to mathematics and physics education. In particular, she developed novel approaches to characterizing entanglement in quantum systems and delineating the space of quantum states. Using recursive techniques and linear algebra, she proved that classes of linear maps hold certain mathematical properties (positive, but not completed positive, optimal, etc.), which enabled extending so-called entanglement witnesses into high-dimensional composite systems. She also led efforts to employ and develop network and statistical analyses to identifying factors that affect student persistence in introductory physics courses. This work resulted in a number of surprising findings (for instance, that social integration is more important than grades in predicting persistence for certain cohorts of students). Her work has been highlighted in Science, Nature Physics, and as the "Editor's Choice" in Physical Review.  

Justyna's current research uses machine learning algorithms and artificial intelligence, especially deep convolutional neural networks, in quantum computing platforms. In particular, she is investigating methods to automatically identify stable configurations of electron spins in semiconductor-based quantum computing. She is also developing a complete software suite that enables modeling of quantum dot devices, train recognition networks, and -- through mathematical optimization -- auto-tune experimental setups. Success in this endeavor will eliminate the need for heuristic calibration and help scale up quantum computing into larger quantum dot arrays.

Publications

Robust Automated Recognition of Noisy Quantum Dot States

Author(s)
Joshua Ziegler, Thomas McJunkin, Emily Joseph, Sandesh Kalantre, Benjamin Harpt, Donald Savage, Max Lagally, Mark Eriksson, Jacob Taylor, Justyna Zwolak
The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected
Created April 23, 2019, Updated June 15, 2021