Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Justin Shaw (Fed)

Justin Shaw is a project leader in the Spin Electronic Group. His current research focusses on developing and applying new measurement techniques based on optical, microwave and ultra-fast extreme ultraviolet (EUV) radiation sources to study spin and phonon dynamics in thin films, nanostructures, and devices. He earned bachelor degrees in both materials science engineering and music theory & composition in 1997, and doctoral degrees in physics in 2004 and in materials science engineering in 2007, all at Arizona State University. He was a National Research Council postdoctoral fellow at the National Institute of Standards and Technology (NIST) in Boulder, Colorado, from 2005 to 2007. In 2007 he became a staff scientist at NIST. He received an U.S. Department of Commerce Bronze medal in 2013 for his work in magnetodynamic measurements of nanostructures and was an IEEE Distinguished Lecturer in 2019.

Research Projects

Publications

Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains

Author(s)
Nanna Hagström, Rahul Jangid, F. N. U. Meera, Diego Turenne, Jeffrey Brock, Erik Lamb, Boyan Stoychev, Justine Schlappa, Natalia Gerasimova, Benjamin Van Kuiken, Rafael Gort, Laurent Mercadier, Loïc Le Guyader, Andrey Samartsev, Andreas Scherz, Giuseppe Mercurio, Hermann Dürr, Alexander Reid, Monika Arora, Hans Nembach, Justin Shaw, Emmanuelle Jal, Eric Fullerton, Mark Keller, Roopali Kukreja, Stefano Bonetti, Thomas J. Silva, Ezio Iacocca
Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how

Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer

Author(s)
Dmitriy Zusin, Ezio E. Iacocca, Loic Le Guyader, Alexander H. Reid, William Schlotter, TianMin Liu, Daniel Higley, Giacomo Coslovich, Scott F. Wandel, Phoebe Tengdin, Sheena K. Patel, Anatoly Shabalin, Nelson Hua, Stjepan Hrkac, Hans Nembach, Justin Shaw, Sergio Montoya, Adam Blonsky, Christian Gentry, Mark Hoefer, Margaret M. Murnane, Henry C. Kapteyn, Eric E. Fullerton, Oleg Shpyrko, Hermann Durr, Thomas J. Silva
Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray

Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL

Author(s)
Thomas J. Silva, Hans Nembach, Mark Keller, Justin Shaw, Nanna Hagstrom, michael schneider, Nico Kerber, Alexander Yaroslavtsev, Erick Parra, Eric Fullerton, Oleg Shpyrko, Christian Gutt, Hermann Durr, Ezio Iacocca, Roopali Kukreja, stefano Bonetti, Emmanuelle Jal
The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology
Created October 8, 2019, Updated March 30, 2023