Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Franklyn Quinlan (Fed)

Publications

Electro-Optically Derived Arbitrary Millimeter-Wave Sources with 100 GHz of Bandwidth

Author(s)
Bryan Bosworth, Nick Jungwirth, Kassiopeia Smith, Jerome Cheron, Franklyn Quinlan, Madison Woodson, Jesse Morgan, Andreas Beling, Ari Feldman, Dylan Williams, Nate Orloff, Chris Long
We demonstrate fine phase and amplitude control of millimeter waves, measured on-wafer using an electro-optic frequency comb, programmable spectral filter, and

Thermal-light heterodyne spectroscopy with frequency comb calibration

Author(s)
Scott Diddams, Connor Fredrick, Franklyn Quinlan, Ryan Terrien, Suvrath Mahadevan, Freja Olsen
Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and

On-Wafer Metrology of a Transmission Line Integrated Terahertz Source

Author(s)
Kassiopeia A. Smith, Bryan T. Bosworth, Nicholas R. Jungwirth, Jerome G. Cheron, Nathan D. Orloff, Christian J. Long, Dylan F. Williams, Richard A. Chamberlin, Franklyn J. Quinlan, Tara M. Fortier, Ari D. Feldman
A combination of on-wafer metrology and high-frequency network analysis was implemented to measure the response of transmission-line integrated Er-GaAs and

Impedance tuning with photoconductors to 40 GHz

Author(s)
Jasper A. Drisko, Ari D. Feldman, Franklyn J. Quinlan, James C. Booth, Nathan D. Orloff, Christian J. Long
Light has been widely used to control a variety of microwave devices, including switches, antennas, and detectors. Here, we present a photoconductive device

Patents

Optical Reference Cavity

NIST Inventors
Franklyn Quinlan , Scott Diddams and Andrew Ludlow
Patent Description We have demonstrated an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity geared toward transportable photonic microwave generation systems and mobile optical atomic clock applications. The cavity can be rigidly held in a way that is first-order insensitive to
Created May 31, 2018, Updated December 9, 2022