NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
https://www.nist.gov/patents/inventors/1158626
Search Patents by Vladimir Oleshko
Patents listed here reflect only technologies patented from FY 2018-present. To view all of NIST's patented technologies, visit the NIST pages on the Federal Laboratory Consortium website.
Christopher Soles
,
Vladimir Oleshko
and
Jabez J McClelland
In this disclosure, we describe a method of creating new and improved battery electrodes by doping conventional battery electrode materials with dry lithium (Li+) ions, using ion implantation techniques under vacuum. This dry "prelithiation" step will both (a) increase the amount of active Li+ in
Christopher Soles
,
Vladimir Oleshko
and
Jabez J McClelland
The proposed method allows the injection of Li+ ions directly into the material and does not need the wet chemical or electrochemical prelithiation with liquid electrolytes and metallic lithium foils, sacrificial additives, donors, or mechanical mixing with SLMP, inducing consumption of lithium for
Nanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO2) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabrication two-terminal devices
A nanostructure sensing device comprises a semiconductor nanostructure having an outer surface, and at least one of metal or metal-oxide nanoparticle clusters functionalizing the outer surface of the nanostructure and forming a photoconductive nanostructure/nanocluster hybrid sensor enabling light