An electron reflectometer includes: a sample stage; a source that produces source electrons; a source collimator; and an electron detector that receives collimated reflected electrons.
It has been discovered that an electron reflectometer and process for performing shape metrology provide electron reflectometry (ER) for measurement or determination of nanoscale dimensions in three dimensions at a surface with small-angle electron reflection. According to Fresnel's law, electrons have a high reflectivity from a surface at an electron energy from 5 kiloelectron volts (keV) to 100 keV at a glancing angle of less than 1° with respect to a plane of the surface. Moreover, the electron reflectometer overcomes reliance by reflective high energy electron diffraction (RHEED) on diffraction spots to determine atomistic surface structure and similar reliance by reflective small angle electron scattering (RSAES) to determine nanoscale shape morphology.
Advantageously, the electron reflectometer and processes measure nanoscale dimensions from intensity information of specularly reflected and non-specularly reflected electrons.