NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object
Published
Author(s)
Florent Q. Lecocq, Jeremy B. Clark, Raymond W. Simmonds, Jose A. Aumentado, John D. Teufel
Abstract
By coupling a macroscopic mechanical oscillator to two microwave cavities, we simultaneously prepare and monitor a nonclassical steady state of mechanical motion. In each cavity, correlated radiation pressure forces induced by two coherent drives engineer the coupling between the quadratures of light and motion. We, first, demonstrate the ability to perform a continuous quantum nondemolition measurement of a single mechanical quadrature at a rate that exceeds the mechanical decoherence rate, while avoiding measurement backaction by more than 13 dB. Second, we apply this measurement technique to independently verify the preparation of a squeezed state in the mechanical oscillator, resolving quadrature fluctuations 20% below the quantum noise.
Lecocq, F.
, Clark, J.
, Simmonds, R.
, Aumentado, J.
and Teufel, J.
(2015),
Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object, Physical Review X, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919245
(Accessed October 7, 2025)