NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The Role of Periodic Interferometer Errors in the Calibration of Capacitance Displacement Sensors for Nanometrology Applications
Published
Author(s)
R Koning, Ronald G. Dixson, Joseph Fu, Theodore V. Vorburger
Abstract
Although the role of the periodic errors of optical heterodyne interferometers in displacement measurements is fairly well understood, their influence on the calibration of other types of displacement sensors do not seem to be studied as extensively. We have performed a careful analysis of the role of these errors on the calibration of a capacitance displacement sensor, which is integrated in a linear piezoelectric transducer for nanometrology applications, over displacement ranges in the sub micrometer range. Assuming a linear dependence of the output voltage of the capacitance displacement sensor on the displacement it was found analytically that periodic the interferometer errors lead to a decaying oscillation of the sensor sensitivity as the displacement range used in the calibration increases. For use of a double path interferometer with a polarization mixing amplitude of 0.5 nm and a polarization mixing wavelength of 79 nm deviations of sensor sensitivity of 0.3% for a range of 0.2 mm and 0.029% for a range of 1 mm were estimated. The pronounced oscillations of the sensor's sensitivity over very small displacement ranges as predicted by the theoretical description were verified experimentally. An agreement within the experimentally observed spread was obtained.
Koning, R.
, Dixson, R.
, Fu, J.
and Vorburger, T.
(2000),
The Role of Periodic Interferometer Errors in the Calibration of Capacitance Displacement Sensors for Nanometrology Applications, Measurement Science & Technology
(Accessed October 11, 2025)