NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Fermi Level Alignment and Electronic Levels in Molecular Wire Self-Assembled Monolayers on Au
Published
Author(s)
Christopher D. Zangmeister, Steven W. Robey, Roger D. van Zee, Yuxing Yao, J M. Tour
Abstract
A combination of one- and two-photon photoelectron spectroscopies are used to determine the electronic structure around the Fermi level for self-assembled monolayers of a prototypical molecular wire , 4,4 -(ethynylphenyl)-1-benzenethiol (C6H5-C≡C-C6H4-C≡C- C6H5-SH) on Au. One-photon ultraviolet photoelectron spectroscopy gives a separation between the Fermi level and occupied p levels delocalized across the oligomer of about 1.9 eV, thus providing a representative value for the hole injection barrier. Two states are identified in two-photon photoelectron spectroscopy measurements corresponding to intermediate excitation to the lowest exciton and excitation to an unoccupied final state derived from the e2u levels of benzene. The separation between the Fermi level and the corresponding unoccupied p* states is estimated to be about 3.2 eV, giving a transport gap of 1.9 + 3.2 = 5.1 eV. Occupied states associated with Au-S interactions are observed near the Fermi level for comparison studies on benzenethiol monolayers. Charge transfer associated with the formation of these levels, and their unoccupied counterparts, is suggested to be produce the approximately 0.7 eV shift of the Fermi level towards the highest occupied orbitals on the oligomer.
Zangmeister, C.
, Robey, S.
, van Zee, R.
, Yao, Y.
and Tour, J.
(2004),
Fermi Level Alignment and Electronic Levels in Molecular Wire Self-Assembled Monolayers on Au, Journal of Physical Chemistry B
(Accessed October 3, 2025)