NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity
Published
Author(s)
Kathryn M. Butler
Abstract
A numerical model is demonstrated for the pyrolysis of a spherical thermoplastic sample in microgravity including effects of bubbles. The model combines nucleation, growth, and migration of individual bubbles in 3-D space with a finite element model that solves the 1-D radial equation for the temperature field. Energy calculations include surface losses due to radiation and convection, conductive heat transfer through the mixture of gaseous and condensed phase material, and the chemistry of gasification. Gases released by bursting bubbles determine the mass loss rate from the sample.
Butler, K.
(2002),
A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861181
(Accessed October 11, 2025)