NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Genomic DNA of Nostoc Commune (Cyanobacteria) Becomes Covalently Modified During Long-Term (Decades) Desiccation But Is Protected From Oxidative Damage and Degradation
Published
Author(s)
B Shirkey, N J. McMaster, Sue C. Smith, D J. Wright, H Rodriguez, Pawel Jaruga, M Birincioglu, R F. Helm, M Potts
Abstract
Genomic DNA of Nostoc commume (Cyanobacteria) became covalently modified during decades of desiccation. Amplification of gene loci from desiccated cells required pretreatment of DNA with N-phenacylthiazolium bromide; a reagent that cleaves DNA- and protein-linked advanced glycosylation endproducts. DNA from 13-year desiccated cells did not show any higher levels of the commonly studied oxidatively-modified DNA damage biomarkers 8-hydroxyguanine, 8-hydroxyadenine, and 5-hydroxyuracil, compared to commercially available calf thymus DNA. Different patterns of amplification products were obtained with DNA from desiccated/rehydrating cells and a liquid culture derived from the dried material, using the same set of primers. In contrast, a reproducible fingerprint was obtained, irrespective of time of rehydration of the DNA, using a primer (5'GWCWATCGCC 3') based upn a highly-iterated palindromic (HIP) repeat sequence present in the genome. In vitro, the desiccation of cccDNA lead to loss of supercoiling, aggregation, loss of resolution during agarose gel electrophoresis, and loss of transformation and transfection efficiency. These changes were minimized when DNA was desiccated and stored in the presence of trehalose, a non-reducing disaccharide present in Nostoc colonies. The response of the N. commune genome to desiccation is different from the response of the genomes of cyanobacteriaand Deinococcus radiodurans to ionizing radiation.
Citation
Nucleic Acids Research
Volume
31
Issue
12
Pub Type
Journals
Keywords
cyanobacteria, desiccation, DNA modification, DNA stability
Shirkey, B.
, McMaster, N.
, Smith, S.
, Wright, D.
, Rodriguez, H.
, Jaruga, P.
, Birincioglu, M.
, Helm, R.
and Potts, M.
(2003),
Genomic DNA of Nostoc Commune (Cyanobacteria) Becomes Covalently Modified During Long-Term (Decades) Desiccation But Is Protected From Oxidative Damage and Degradation, Nucleic Acids Research
(Accessed October 16, 2025)