NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Metallurgical and mechanical analyses were performed on steel and rivet samples recovered from the wreck of the RMS Titanic. It was found that the steel possessed a ductile-to-brittle transition temperature that was very high for this type of steel, making the material brittle at ice water temperatures. This has been attributed to both chemical and microstructural factors. It has also been found that the wrought iron rivets used in the construction of Titanic contained an elevated amount of incorporated slag, and that the orientation of the slag within the rivets may hold an explanation for how the ship accumulated damage during its encounter with the iceberg.
Foecke, T.
(1998),
Metallurgy of the RMS Titanic, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852863
(Accessed October 7, 2025)