Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Approximate theoretical model for the five electronic states (¿ = 5/2, 3/2, 3/2, 1/2, 1/2) arising from the ground 3d9 configuration in nickel halide molecules and for the rotational levels of the two ¿ = 1/2 states in this manifold

Published

Author(s)

Jon T. Hougen

Abstract

This paper is divided into two parts. In the first part an effective Hamiltonian for a non-rotating diatomic molecule containing only crystal-field and spin-orbit operators is set up to describe the energies of the five spin-orbit components that arise in the ground electronic configuration of the nickel monohalides. The model assumes that bonding in the nickel halides has the approximate form Ni+X, with an electronic 3d9 configuration plus closed shells on the Ni+ moiety and a closed shell configuration on the X moiety. From a crystal-field point of view, interactions of the positive d-hole with the cylindrically symmetrical electric charge distribution of the hypothetical NiX closed-shell core can then be parameterized by three terms in a traditional expansion in spherical harmonics: C0 + C2Y20(,) + C4Y40(,). Interaction of the hole with the magnetic field generated by its own orbital motion can be parameterized by a traditional spin-orbit interaction operator ALS. The Hamiltonian matrix is set up in a basis set consisting of the ten Hund’s case (a) basis functions |, that arise when L = 2 and S = ¿. Least-squares fits of the five lowest observed electronic spin-orbit component states in NiF and NiCl are then carried out in terms of the four parameters C0, C2, C4, A which lead to good agreement except for the two || = ¿ states. The large equal and opposite residuals of the || = ¿ states can be reduced to those for the || = 3/2 and || = 5/2 states by fixing A to its value in Ni+ and then introducing an empirical correction factor for one off-diagonal spin-orbit matrix element. In the second part of the paper the usual effective Hamiltonian B(JLS)2 for a rotating diatomic molecule is used to derive expressions for the -type doubling parameter p in the two || = ¿ states. These expressions show (for certain sign conventions) that the sum of the two p values should be 2B, but that their difference can be as large as 10B. These theoretical r
Citation
Journal of Molecular Spectroscopy
Volume
267

Keywords

electronic states, d-electrons, crystal-field theory, spin-orbit components, rotational levels, p-type doubling, Ω = 1/2 states

Citation

Hougen, J. (2011), Approximate theoretical model for the five electronic states (¿ = 5/2, 3/2, 3/2, 1/2, 1/2) arising from the ground 3d9 configuration in nickel halide molecules and for the rotational levels of the two ¿ = 1/2 states in this manifold, Journal of Molecular Spectroscopy, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906144 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created January 25, 2011, Updated February 19, 2017
Was this page helpful?