NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Simulation of lattice strain due to CNT-metal interface
Published
Author(s)
Alexander Y. Smolyanitsky, Vinod K. Tewary
Abstract
We report an atomistic molecular statics study of strains in single wall carbon nanotubes (SWCNTs) interfaced with a planar nickel surface. We calculate axial and radial strain distributions along the SWCNT axis. We demonstrate strains of up to 2% extending over a distance of ~10nm away from the interface. This indicates a possible effect on the CNT-metal contact electrical resistance via local strain-induced modification in the SWCNT electron energy band structure.