NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Adam V. Steele, Brenton J. Knuffman, Jabez J. McClelland, Jon Orloff
Abstract
With the goal of expanding the capabilities of focused ion beam microscopy and milling systems, we have demonstrated nanoscale focusing of chromium ions produced in a magneto-optical trap ion source (MOTIS). Neutral chromium atoms are captured into a magneto-optical trap and cooled to 100 µK with laser light at 425 nm. The atoms are subsequently photoionized and accelerated to energies between 0.5 keV and 3 keV. The accelerated ion beam is scanned with a dipolar deflector and focused onto a sample by an einzel lens. Secondary electron images are collected and analyzed, and from these a beam diameter is inferred. The result is a focused probe with a one-standard-deviation radius as small as 205(10) nm. While this probe size is in the useful range for nanoscale applications, it is almost three times larger than is predicted by ray-tracing simulations. Possible explanations for this discrepancy are discussed.
Steele, A.
, Knuffman, B.
, McClelland, J.
and Orloff, J.
(2010),
A Focused Chromium Ion Beam, Journal of Vacuum Science and Technology B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906025
(Accessed October 10, 2025)