NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Bridging the Micro to Macro Gap: A New Application for Milli-probe X-ray Fluorescence
Published
Author(s)
Jeffrey M. Davis, Dale E. Newbury, Nicholas W. Ritchie, Edward P. Vicenzi, Dale P. Bentz, Albert J. Fahey
Abstract
X-ray elemental mapping and x-ray spectrum imaging are powerful microanalytical tools. However, their scope is limited spatially by the raster area of a scanning electron microscope or microprobe. Limited sampling size becomes a significant issue when large area (>10 cm2), heterogeneous materials such as meteorites, concrete samples, or others must be examined. In such specimens, macro scale structures, inclusions or concentration gradients are often of interest, yet microbeam methods are insufficient or at least inefficient for analyzing them. The inapplicability of defocused, stage scanning microprobe analysis stems largely from the requirement for vacuum and the necessity of charge dissipating coatings. Such requirements largely exclude the samples of interest presented in this paper from electron probe microanalysis. Milli x-ray fluorescence x-ray spectrum imaging (mXRF-XSI) provides a solution to the problem of macro scale x-ray imaging, especially where such difficult samples are considered. Using a mid-sized beam coupled with an x-ray excitation source has a number of advantages, such as the ability to work at atmospheric pressure, and lower limits of detection owing to the absence of the electron Bremsstrahlung. MXRF-XSI also acts as a complement, where applicable, to microbeam x-ray output, highlighting areas of interest for follow-up microanalysis at a finer length scale.
Davis, J.
, Newbury, D.
, Ritchie, N.
, Vicenzi, E.
, Bentz, D.
and Fahey, A.
(2011),
Bridging the Micro to Macro Gap: A New Application for Milli-probe X-ray Fluorescence, Microscopy and Microanalysis, [online], https://doi.org/10.1017/S1431927611000183
(Accessed October 8, 2025)