NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Bubble motion and size variation during thermal migration with phase change
Published
Author(s)
Asha K. Nurse, Geoffrey B. McFadden, Sam R. Coriell
Abstract
An analysis of the motion of a spherical bubble in a two-phase, single component system with a vertical linear temperature gradient is presented. The model for the migration of an immiscible bubble under the effects of buoyancy and thermocapillarity considered by Young, Goldstein and Block is modified to allow for phase change at the bubble surface. We allow the possibility of both translation of the bubble in the vertical direction and the change of bubble radius with time. Depending on the material parameters, the thermocapillary and buoyancy effects that govern the migration of an immiscible bubble can be overwhelmed by the effects of latent heat generation, resulting in a change in the mechanism driving the motion. For a water-steam system conditions are determined for a stationary bubble in which the effects of buoyancy and thermal migration are balanced. The linear stability of the bubble is considered, and conditions of overstability are determined that correspond to oscillatory instabilities in the position and radius of the bubble. A weakly nonlinear analysis of the solution in the vicinity of the overstable solution is performed, and the results are compared with a numerical solution of the nonlinear equations.
Nurse, A.
, McFadden, G.
and Coriell, S.
(2013),
Bubble motion and size variation during thermal migration with phase change, Physics of Fluids A-Fluid Dynamics, [online], https://doi.org/10.1063/1.4774329
(Accessed October 2, 2025)