Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Chiral Index Dependence of the G+ and G- RamanModes in Semiconducting Carbon Nanotubes

Published

Author(s)

Ming Zheng, Xiaomin X. Tu, Hagen Telg, Stephen K. Doorn, Juan Duque

Abstract

Raman spectroscopy on the radial breathing mode is a common tool to determine the diameter d or chiral indices (n;m) of single walled carbon nanotubes. In this work we presentan alternative technique to determine d and (n;m) based on the high-energy G mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n;m) samples we obtain the diameter, chiral angle and family dependence of the G and G+ peak position. Considering theoretical predictions we discuss the origin of these dependences with respect to rehybridization of the carbon orbitals, confinement, and electron-electron interactions. The relative Raman intensities of the two peaks have a systematic chiral-angle dependence in agreement with theories considering the symmetry of nanotubes and the associated phonons.
Citation
ACS Nano

Keywords

carbon nanotubes, raman spectroscopy

Citation

Zheng, M. , Tu, X. , Telg, H. , Doorn, S. and Duque, J. (2012), Chiral Index Dependence of the G+ and G- RamanModes in Semiconducting Carbon Nanotubes, ACS Nano, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910144 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created January 24, 2012, Updated September 29, 2025
Was this page helpful?