NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Real-time and high-throughput Raman signal extraction and processing in CARS hyperspectral imaging
Published
Author(s)
Charles Camp, John S. Bender, Young Lee
Abstract
We present a new collection of processing techniques, collectively "factorized Kramers-Kroenig and error correction" (fKK-EC), for (a) Raman signal extraction, (b) denoising, and (c) phase- and scale- error correction in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging and spectroscopy. These new methods are orders-or-magnitude faster than conventional methods and capable of real-time performance, owing to the unique core concept: performing all processing on a small basis vector set and using matrix/vector multiplication afterwards for direct and fast transformation of the entire dataset. Experimentally, we demonstrate that a 703,026 spectra image of chicken cartilage can be processed in 70 s (0.1 ms / spectrum), which is > 70 times faster than with the conventional workflow (7.0 ms / spectrum). Additionally, we discuss that this method may be used in a machine learning (ML) fashion in which the transformed basis vector sets may be re-used with new data. Using this ML paradigm, the same tissue image was processed in 40 s, which is a speed-up of > 150 times.
Camp, C.
, Bender, J.
and Lee, Y.
(2021),
Real-time and high-throughput Raman signal extraction and processing in CARS hyperspectral imaging, Optics Express, [online], https://doi.org/10.1364/OE.397606, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930220
(Accessed October 9, 2025)