NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Measuring Microfluidic Flow Rates: Monotonicity, Convexity and Uncertainty
Published
Author(s)
Paul Patrone, Qing Hai Li, Gregory A. Cooksey, Anthony J. Kearsley
Abstract
A class of non-linear integro-differential equations characterizing microfluidic measurements is considered. Under reasonable conditions, these non-linear integro-differential equations admit solutions that are convex functions of an interesting flow-rate model problem parameter. A novel element of the analysis is the elevation of this parameter to an independent variable through recasting of the problem as a partial-differential equation (PDE) by employing ordinary differential equations (ODE) theory.
Patrone, P.
, Li, Q.
, Cooksey, G.
and Kearsley, A.
(2020),
Measuring Microfluidic Flow Rates: Monotonicity, Convexity and Uncertainty, Applied Mathematics Letters, [online], https://doi.org/10.1016/j.aml.2020.106694, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930285
(Accessed October 10, 2025)