NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optimal transport and colossal ionic mechano-conductance in graphene crown ethers
Published
Author(s)
Subin Sahu, Justin E. Elenewski, Christoph Rohmann, Michael P. Zwolak
Abstract
Biological ion channels balance electrostatics and hydration, yielding large ion selectivities alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of mechanistic studies. In contrast, we demonstrate that graphene crown ether pores afford a simple platform to directly investigate optimal transport conditions. Crown ethers are known for selective ion adsorption. When embedded in graphene, however, transport rates lie below the diffusion limit. We show that small pore strains -- 1~\% -- give rise to a colossal -- 100~\% -- change in conductance. This process is electromechanically tunable, with optimal transport in a majority diffusive regime -- veering toward barrierless transport as opposed to a knock--on mechanism. Its measurement will yield direct information on the local electrostatic conditions of the pore. These observations suggest a novel setup for biomimetic devices while giving insight into the physical foundation of evolutionarily--optimized ion transport.
Sahu, S.
, Elenewski, J.
, Rohmann, C.
and Zwolak, M.
(2019),
Optimal transport and colossal ionic mechano-conductance in graphene crown ethers, Science Advances, [online], https://doi.org/10.1126/sciadv.aaw5478
(Accessed November 3, 2025)