NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dhananjay Anand, Zheng Wang, Dawn Tilbury, James Moyne, CheeYee Tang
Abstract
This paper presents an anomaly detection method using a hybrid observer comprised of state observers for both discrete and continuous states. We focus our attention on anomalies caused by intelligent attacks that use knowledge of the system behavior to evade anomaly detection methods that independently classify either the event sequence or the observed residuals as anomalous. In contrast, our approach uses the relation between the continuous and discrete variables to detect conditions we define as conflicts. This paper demonstrates the effectiveness of our conflict-driven anomaly detection method mathematically as well as through an illustrative hybrid model of a Train-Gate (TG) system. We analyze our detection method against three conflict types and give the conditions under which the detection of anomalies is guaranteed.
Anand, D.
, Wang, Z.
, Tilbury, D.
, Moyne, J.
and Tang, C.
(2018),
Conflict-driven Hybrid Observer-based Anomaly Detection, Proceedings of the American Control Conference, Milwakee, WI, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=924836
(Accessed October 2, 2025)