NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Temperature extrapolation of multicomponent grand canonical free energy landscapes
Published
Author(s)
Nathan Mahynski, Jeffrey R. Errington, Vincent K. Shen
Abstract
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences which result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions which tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.
Mahynski, N.
, Errington, J.
and Shen, V.
(2017),
Temperature extrapolation of multicomponent grand canonical free energy landscapes, The Journal of Chemical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923163
(Accessed October 8, 2025)