NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
MCMLpar and MCSLinv: A Parallel Version of MCML and an Inverse Monte Carlo Algorithm to Calculate Optical Scattering Parameters
Published
Author(s)
Richelle H. Streater, Anne-Michelle R. Lieberson, Adam L. Pintar, Zachary H. Levine
Abstract
The MCML program for Monte Carlo modeling of light transport in multi-layered tissues has been widely used in the past 20 years or so. Here, we have re-implemented MCML for solving the inverse problem. Our formulation features optimizing the profile log likelihood which takes into account uncertainties due to both experimental and Monte Carlo sampling. We limit the search space for the optimum parameters with relatively few Monte Carlo trials and then iteratively double the number of Monte Carlo trials until the search space stabilizes. At this point, the log likelihood can be fit with a quadratic function to find the optimum. The time-to-solution is only a few minutes in typical cases because we use importance sampling to determine the log likelihood on a grid of parameters at each iteration. Also, our implementation uses OpenMP and SPRNG to generate Monte Carlo trials in parallel.
Streater, R.
, Lieberson, A.
, Pintar, A.
and Levine, Z.
(2017),
MCMLpar and MCSLinv: A Parallel Version of MCML and an Inverse Monte Carlo Algorithm to Calculate Optical Scattering Parameters, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/jres.122.038
(Accessed October 26, 2025)