NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Joseph A. Hagmann, Xiang Li, Si-Ning Dong, Sergei Rouvimov, Sujitra J. Pookpanratana, Kin Man Yu, Tatyana Orlova, Curt A. Richter, David G. Seiler, Xinyu Liu, Jacek K. Furdyna, Margaret Dobrowolska
Abstract
Progress in understanding topologically non-trivial systems offers the promise of predicting novel systems that demonstrate the remarkable properties associated with topological systems, such as unidirectional spin-polarized surface current and the potential to host exotic topological states. We theoretically demonstrate a new topological insulator with in-plane magnetic ordering, Bi2MnSe4, the growth of which arises from the intergrowth of {111} planes of MnSe with Bi2Se3 layers, and present, for the first time, its structural, magnetic, and electronic properties. We propose a method of molecular beam epitaxial growth of this material and present details on the resulting growth of Bi2MnSe4 in a self-assembled layered heterostructure with Bi2Se3 in a near-periodic self-assembled heterostructure formed of layers of Bi2Se3 separated by single-layer Bi2MnSe4 crystals. Corresponding theoretical calculations of the electronic structure of these heterostructures show a disruption of the topological state arising from the strain field at the Bi2Se3-Bi2MnSe4 boundary and a corresponding opening of a gap in the Dirac cone. Our results demonstrate the growth mechanism and physical characteristics of Bi2MnSe4, a novel system with an intriguing combination of topological and magnetic properties.
Hagmann, J.
, Li, X.
, Dong, S.
, Rouvimov, S.
, Pookpanratana, S.
, , K.
, Orlova, T.
, Richter, C.
, Seiler, D.
, Liu, X.
, Furdyna, J.
and Dobrowolska, M.
(2017),
Epitaxially-grown self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures, New Journal of Physics
(Accessed October 10, 2025)