NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores
Published
Author(s)
Subin Sahu, Massimiliano Di Ventra, Michael P. Zwolak
Abstract
Ion channels play a critical role in regulating cell behavior and in electrical signaling. In these settings, polar and charged functional groups -- as well as protein response -- give rise to ion selective transport, allowing the channels to perform specific tasks in the operation of cells. According to recent experiments, graphene nanopores can have both weak to strong selectivity, the origin of which is unclear. Here, we establish an alternative, novel mechanism for selectivity: Dehydration -- the most fundamental physical process in ion transport -- yields selective pores without the presence of charges or structural changes of the pore. This fundamental mechanism -- one that depends only on the geometry and hydration -- is the starting point for selectivity for all channels and pores. Its likely detection in graphene pores resolves the conflicting selectivity results, as well as opens up a new paradigm for engineering molecular/ionic selectivity in filtration and other applications.
Sahu, S.
, Di, M.
and Zwolak, M.
(2017),
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores, Nano Letters, [online], https://doi.org/10.1021/acs.nanolett.7b01399
(Accessed October 9, 2025)