NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A scoring metric for multivariate data for reproducibility analysis using chemometric methods
Published
Author(s)
David A. Sheen, Werickson Fortunato de Carvalho Rocha, Katrice A. Lippa, Dan Bearden
Abstract
Process quality control and reproducibility in emerging measurement fields such as metabolomics is normally assured by interlaboratory comparison testing. As a part of this testing process, spectral features from a spectroscopic method such as nuclear magnetic resonance (NMR) spectroscopy are attributed to particular analytes within a mixture, and it is the metabolite concentrations that are returned for comparison between laboratories. However, data quality may also be assessed directly by using binned spectral data before the time-consuming identification and quantification. Use of the binned spectra has some advantages, including preserving information about trace constituents and enabling identification of process difficulties. In this paper, we demonstrate the use of binned NMR spectra to conduct a detailed interlaboratory comparison and composition analysis. Spectra of synthetic and biologically- obtained metabolite mixtures, taken from a previous interlaboratory study, are compared with cluster analysis using a variety of distance and entropy metrics. The individual measurements are then evaluated based on where they fall within their clusters, and a laboratory-level scoring metric is developed, which provides an assessment of each laboratorys individual performance.
Sheen, D.
, Fortunato, W.
, Lippa, K.
and Bearden, D.
(2016),
A scoring metric for multivariate data for reproducibility analysis using chemometric methods, Chemometrics and Intelligent Laboratory Systems, [online], https://doi.org/10.1016/j.chemolab.2016.12.010
(Accessed October 9, 2025)