NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cure temperature influences electrical properties via carbon nanotube-rich domain formation
Published
Author(s)
Chelsea S. Davis, Nathan D. Orloff, Jeremiah W. Woodcock, Christian J. Long, Kevin A. Twedt, Bharath NMN Natarajan, Jonathan E. Seppala, Jabez J. McClelland, Jan Obrzut, James A. Liddle, Jeffrey W. Gilman
Abstract
Carbon nanotube (CNT) nanocomposites are enticing materials that enable engineers to tailor structural and electrical properties for applications in the automotive and aerospace industries. CNT mass fraction and the matrix cure temperature are two ways to tune the direct current and alternating current electrical properties of these nanocomposites; yet, how mass fraction and cure temperature affect electrical properties remains unclear. In many cases, nanofillers such as carbon nanotubes appear in concentrated domains within the nanocomposite. Recent insights into nanoparticle-rich domain formation and its influence on electrical properties raise questions about which processing variables might optimally tune the electrical properties. Utilizing advanced, nondestructive metrology techniques such as scanning lithium-ion microscopy and microwave cavity perturbation, new insights are presented into the role of mass fraction and cure temperature in multiwall carbon nanotube bisphenol A diglycidyl ether epoxy composites. Here, it is found that both mass fraction and cure temperature affect dispersion quality, leading to a direct effect on the electrical properties. Specifically, it is shown that the DC conductivity is nearly an order of magnitude higher for composites prepared at elevated matrix cure temperatures for a given CNT mass fraction. These findings elucidate pathways to generate designer nanocomposites for advanced electrically active applications.
Davis, C.
, Orloff, N.
, Woodcock, J.
, Long, C.
, Twedt, K.
, , B.
, Seppala, J.
, McClelland, J.
, Obrzut, J.
, Liddle, J.
and Gilman, J.
(2016),
Cure temperature influences electrical properties via carbon nanotube-rich domain formation, Composites Science and Technology, [online], https://doi.org/10.1016/j.compscitech.2016.07.012
(Accessed October 9, 2025)