NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Low Temperature Ionic Conductivity of an Acceptor Doped Perovskite Part II: Impedance Spectroscopy of Single Crystalline BaTiO3
Published
Author(s)
Russell A. Maier
Abstract
Low temperature conductivity mechanisms are identified in acceptor doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states are quenched into samples doped with manganese or iron dopants. Impedance spectroscopy measurements are used to identify room temperature conductivity mechanisms in the single crystal samples, and permittivity temperature dependence are also shown to be self-consistent with the nature of the first order ferroelectric phase transition using an appropriate equivalent circuit to interpret the impedance data. The primary conduction mechanism is determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration is determined to have a value of nearly 0.7eV agreeing well with values found in the similar perovskite structure of SrTiO3.
Maier, R.
(2016),
Low Temperature Ionic Conductivity of an Acceptor Doped Perovskite Part II: Impedance Spectroscopy of Single Crystalline BaTiO3, Journal of the American Ceramic Society, [online], https://doi.org/10.1111/jace.14347
(Accessed October 10, 2025)